Asymptotics for a dissipative dynamical system with linear and gradient-driven damping
Autor: | Yuhu Wu, Xiaoping Xue |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Mathematical Modelling and Analysis, Vol 18, Iss 5 (2013) |
Druh dokumentu: | article |
ISSN: | 13926292 1392-6292 1648-3510 |
DOI: | 10.3846/13926292.2013.868842 |
Popis: | We study, in the setting of a real Hilbert space H, the asymptotic behavior of trajectories of the second-order dissipative dynamical system with linear and gradient-driven nonlinear damping where λ > 0 and f, Φ: H → R are two convex differentiable functions. It is proved that if Φ is coercive and bounded from below, then the trajectory converges weakly towards a minimizer of Φ. In particular, we state that under suitable conditions, the trajectory strongly converges to the minimizer of Φ exponentially or polynomially. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |