Improving earthquake prediction accuracy in Los Angeles with machine learning

Autor: Cemil Emre Yavas, Lei Chen, Christopher Kadlec, Yiming Ji
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-54 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-76483-x
Popis: Abstract This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel predictive features, we developed a robust subset capable of estimating the maximum potential earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, Random Forest proved to be the most effective. Our findings underscore the transformative potential of machine learning and neural networks in enhancing earthquake prediction accuracy, offering significant advancements in seismic risk management and preparedness for Los Angeles.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje