Ultrathin, High‐Aspect‐Ratio Bismuth Sulfohalide Nanowire Bundles for Solution‐Processed Flexible Photodetectors

Autor: Da Won Lee, Seongkeun Oh, Dong Hyun David Lee, Ho Young Woo, Junhyuk Ahn, Seung Hyeon Kim, Byung Ku Jung, Yoonjoo Choi, Dagam Kim, Mi Yeon Yu, Chun Gwon Park, Hongseok Yun, Tae‐Hyung Kim, Myung Joon Han, Soong Ju Oh, Taejong Paik
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advanced Science, Vol 11, Iss 33, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2198-3844
DOI: 10.1002/advs.202403463
Popis: Abstract In this study, a novel synthesis of ultrathin, highly uniform colloidal bismuth sulfohalide (BiSX where X = Cl, Br, I) nanowires (NWs) and NW bundles (NBs) for room‐temperature and solution‐processed flexible photodetectors are presented. High‐aspect‐ratio bismuth sulfobromide (BiSBr) NWs are synthesized via a heat‐up method using bismuth bromide and elemental S as precursors and 1‐dodecanethiol as a solvent. Bundling of the BiSBr NWs occurs upon the addition of 1‐octadecene as a co‐solvent. The morphologies of the BiSBr NBs are easily tailored from sheaf‐like structures to spherulite nanostructures by changing the solvent ratio. The optical bandgaps are modulated from 1.91 (BiSCl) and 1.88 eV (BiSBr) to 1.53 eV (BiSI) by changing the halide compositions. The optical bandgap of the ultrathin BiSBr NWs and NBs exhibits blueshift, whose origin is investigated through density functional theory‐based first‐principles calculations. Visible‐light photodetectors are fabricated using BiSBr NWs and NBs via solution‐based deposition followed by solid‐state ligand exchanges. High photo‐responsivities and external quantum efficiencies (EQE) are obtained for BiSBr NW and NB films even under strain, which offer a unique opportunity for the application of the novel BiSX NWs and NBs in flexible and environmentally friendly optoelectronic devices.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje