Autor: |
Nabil Kerdid |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 10, Pp 23974-23988 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.20231222?viewType=HTML |
Popis: |
In this paper, we show that the spectral problem associated to stretching modes in a thin folded plate can be derived from the three-dimensional eigenvalue problem of linear elasticity through a rigourous convergence analysis as the thickness of the plate goes to zero. We show, using a nonstandard asymptotic analysis technique, that each stretching frequency of an elastic thin folded plate is the limit of a family of high frequencies of the three-dimensional linearized elasticity system in the folded plate, as the thickness approaches zero. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|