Autor: |
Chengke Bao, Qianxi Wu, Weidong Ji, Min Wang, Haoyu Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of King Saud University: Computer and Information Sciences, Vol 36, Iss 9, Pp 102224- (2024) |
Druh dokumentu: |
article |
ISSN: |
1319-1578 |
DOI: |
10.1016/j.jksuci.2024.102224 |
Popis: |
With the development of artificial intelligence in education, knowledge tracing (KT) has become a current research hotspot and is the key to the success of personalized instruction. However, data sparsity remains a significant challenge in the KT domain. To address this challenge, this paper applies quantum computing (QC) technology to KT for the first time. It proposes two personalized KT models incorporating quantum mechanics (QM): quantum convolutional enhanced knowledge tracing (QCE-KT) and quantum variational enhanced knowledge tracing (QVE-KT). Through quantum superposition and entanglement properties, QCE-KT and QVE-KT effectively alleviate the data sparsity problem in the KT domain through quantum convolutional layers and variational quantum circuits, respectively, and significantly improve the quality of the representation and prediction accuracy of students’ knowledge states. Experiments on three datasets show that our models outperform ten benchmark models. On the most sparse dataset, QCE-KT and QVE-KT improve their performance by 16.44% and 14.78%, respectively, compared to DKT. Although QC is still in the developmental stage, this study reveals the great potential of QM in personalized KT, which provides new perspectives for solving personalized instruction problems and opens up new directions for applying QC in education. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|