Autor: |
Victor Lohezic, Mehmet Ozgur Sahin, Fabrice Couderc, Julie Malcles |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
European Physical Journal C: Particles and Fields, Vol 83, Iss 3, Pp 1-9 (2023) |
Druh dokumentu: |
article |
ISSN: |
1434-6052 |
DOI: |
10.1140/epjc/s10052-023-11347-8 |
Popis: |
Abstract Data-driven methods are widely used to overcome shortcomings of Monte Carlo simulations (lack of statistics, mismodeling of processes, etc.) in experimental high energy physics. A precise description of background processes is crucial to reach the optimal sensitivity for a measurement. However, the selection of the control region used to describe the background process in a region of interest biases the distribution of some physics observables, rendering the use of such observables impossible in a physics analysis. Rather than discarding these events and/or observables, we propose a novel method to generate physics objects compatible with the region of interest and properly describing the correlations with the rest of the event properties. We use a generative adversarial network (GAN) for this task, as GANs are among the best generator models for various applications. We illustrate the method by generating a new misidentified photon for the $$\gamma + \textrm{jets}$$ γ + jets background of the $$\textrm{H}\rightarrow \gamma \gamma $$ H → γ γ analysis at the CERN LHC, and demonstrate that this GAN generator is able to produce a coherent object correlated with the different properties of the rest of the event. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|