Pantoprazole (PPZ) Inhibits RANKL-Induced Osteoclast Formation and Function In Vitro and Prevents Lipopolysaccharide- (LPS-) Induced Inflammatory Calvarial Bone Loss In Vivo

Autor: Yu-Xi Li, Fu-Chao Chen, Ting Liu, Zhao-Peng Cai, Keng Chen, Guo-Xue Tang, Jun-Shen Huang, Xiang-Ge Liu, Jia-Jun Huang, Peng Wang, Yu-Wei Liang, Lin Huang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Stem Cells International, Vol 2020 (2020)
Druh dokumentu: article
ISSN: 1687-966X
1687-9678
DOI: 10.1155/2020/8829212
Popis: Bone remodeling is a process delicately balanced between osteoclastic bone resorption and osteoblastic bone formation. Osteoclasts (OCs) are multinucleated giant cells formed through the fusion of monocytic precursors of the hematopoietic stem cells lineage. OCs are the exclusive cells responsible for the resorption and degradation of the mineralized bone matrix. Pantoprazole (PPZ), a proton pump inhibitor (PPI), is commonly prescribed to reduce excess gastric acid production for conditions such as gastroesophageal reflux disease and peptic ulcer disease. Studies have found contradictory effects of PPI therapy on bone metabolism due to the lack of understanding of the exact underlying mechanism. In this study, we found that PPZ inhibits receptor activator of nuclear factor-κB (NF-κB) ligand- (RANKL-) induced osteoclastogenesis from bone marrow monocytic/macrophage (BMMs) precursors and the bone-resorbing activity of mature OCs. Correspondingly, the expression of OC marker genes was also attenuated. At the molecular level, PPZ treatment was associated with reduced activation of the ERK MAPK signaling pathways crucial to OC differentiation. Additionally, the in vivo administration of PPZ protected mice against lipopolysaccharide- (LPS-) induced inflammatory calvarial bone erosion, as a result of the reduced number and activity of OCs on the calvarial bone surface. Although PPI use is associated with increased risk of osteoporosis and bone fractures, our study provides evidence for the direct inhibitory effect of PPZ on OC formation and bone resorption in vitro and in vivo, suggesting a potential therapeutic use of PPZ in the treatment of osteolytic disease with localized bone destruction.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje