Physics-constrained 3D convolutional neural networks for electrodynamics

Autor: Alexander Scheinker, Reeju Pokharel
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: APL Machine Learning, Vol 1, Iss 2, Pp 026109-026109-11 (2023)
Druh dokumentu: article
ISSN: 2770-9019
DOI: 10.1063/5.0132433
Popis: We present a physics-constrained neural network (PCNN) approach to solving Maxwell’s equations for the electromagnetic fields of intense relativistic charged particle beams. We create a 3D convolutional PCNN to map time-varying current and charge densities J(r, t) and ρ(r, t) to vector and scalar potentials A(r, t) and φ(r, t) from which we generate electromagnetic fields according to Maxwell’s equations: B = ∇ × A and E = −∇φ − ∂A/∂t. Our PCNNs satisfy hard constraints, such as ∇ · B = 0, by construction. Soft constraints push A and φ toward satisfying the Lorenz gauge.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje