In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line

Autor: Sagiru Hamza Abdullahi, Adamu Uzairu, Gideon Adamu Shallangwa, Sani Uba, Abdullahi Bello Umar
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Bulletin of the National Research Centre, Vol 46, Iss 1, Pp 1-23 (2022)
Druh dokumentu: article
ISSN: 2522-8307
DOI: 10.1186/s42269-021-00690-z
Popis: Abstract Background Cancer is a major health threat especially in unindustrialized nations. It surpasses coronary diseases and takes the number one killer position as a result of different global wide influences. Among many breast cancer substrates, triple-negative breast cancer (TNBC) is particularly devastating because it rapidly metastasize to other parts of the body, with a high risk of earlier recession and mortality. Result In this research work, four (4) quantitative structure activity relationship (QSAR) models were developed using a series of quinazoline derivatives with activities against triple negative breast cancer cell line (MDA-MB231), model 1 was selected due to its statistical fitness with the following validation parameters: R 2 = 0.875, Q 2 = 0.837, R 2 − Q 2 = 0.038, N ext test set = 5, and R 2 ext = 0.655. Molecular docking studies was performed for the quinazoline series as well as the reference drug (Gefitinib) and the active site of the epidermal growth factor receptor (EGFR) (pdb id = 3ug2). Eight compounds (6, 10, 13, 16, 17, 18, 19 and 20) were observed to have better docking score docking scores relative to Gefitinib. Compound number nineteen from the training set (pred pIC50 = 5.67, Residual = − 0.04 and MolDock score = − 123.238) was identified as the best compound since it has the best Moldock score and was excellently predicted by the selected model with least residual value, Hence was adopted as template for the design of Ten (10) new novel compounds with better activities and better docking scores. The inhibitive activities of the designed compounds were predicted by the selected model and most of them possess an improved activity relative to the template compound (19). The designed compounds were also redocked on to active pocket of the EGFR receptor and it was observed that they displayed better docking scores compared to the Template and the reference drug (Gefitinib) utilized in the design. Furthermore, the designed compounds were subjected to ADMET and drug-likeness studies using SWISSADME and pkCSM online web tools and they were observed to be pharmacologically active, easily synthesized and do not violate the Lipinski’s rule of five. Conclusion Hence, the designed compounds can be employed as inhibitors of MDA-MB231 cell line after passing through in vivo and in vitro evaluation.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje