Dunkl analogue of Szász-mirakjan operators of blending type

Autor: Deshwal Sheetal, Agrawal P.N., Araci Serkan
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Open Mathematics, Vol 16, Iss 1, Pp 1344-1356 (2018)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2018-0116
Popis: In the present work, we construct a Dunkl generalization of the modified Szász-Mirakjan operators of integral form defined by Pǎltanea [1]. We study the approximation properties of these operators including weighted Korovkin theorem, the rate of convergence in terms of the modulus of continuity, second order modulus of continuity via Steklov-mean, the degree of approximation for Lipschitz class of functions and the weighted space. Furthermore, we obtain the rate of convergence of the considered operators with the aid of the unified Ditzian-Totik modulus of smoothness and for functions having derivatives of bounded variation.
Databáze: Directory of Open Access Journals