Performance of Cs-Doped Carbon-Based Perovskite Solar Cells in Ambient Environment

Autor: Tanzeela Yousaf, Nadia Shahzad, Abdul Sattar, Muhammad Ali Tariq, Naveed Hussain, Zuhair S. Khan, Sofia Javed, Muhammad Imran Shahzad, Diego Pugliese
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Energies, Vol 16, Iss 12, p 4748 (2023)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en16124748
Popis: The development of organometal halide-based perovskite solar cells (PSCs) has made remarkable progress in photovoltaics. The commercialization of PSCs is still significantly limited, owing to their poor stability and the high material cost of a hole transport layer (HTL) and metal electrodes. To counter these issues, a carbon-based HTL and noble metal-free PSCs are being used. In this work, the effect of Cs-doping on perovskite film morphology and device performance has been systematically studied because the Cs+ and Br− ions-doping has proved to be a good choice to improve the stability of PSCs in combination with a carbon electrode. The results showed that when the Cs-doping concentration in perovskite film, MA1−xCsxPb(I1−yBry)3, was equal to x = 0.09, there was a substantial change in the morphological and optoelectronic properties of perovskite films. The grain size of perovskite films was improved from 70 nm (x = 0.00 control) to 170 nm (x = 0.09 Cs-doped), reducing grain boundaries. Moreover, the trap states were additionally passivated resulting in improved radiative recombinations in the perovskite film. The device fabrication was carried out in a controlled dry glovebox, with relative humidity < 40% using carbon as a counter electrode. As a result, Cs-doped PSCs showed a significant increase in efficiency (5.27%) compared to control PSCs (1.55%).
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje