Uncertainty Analysis of Greenhouse Gas (GHG) Emissions Simulated by the Parametric Monte Carlo Simulation and Nonparametric Bootstrap Method

Autor: Kun Mo Lee, Min Hyeok Lee, Jong Seok Lee, Joo Young Lee
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Energies, Vol 13, Iss 18, p 4965 (2020)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en13184965
Popis: Uncertainty of greenhouse gas (GHG) emissions was analyzed using the parametric Monte Carlo simulation (MCS) method and the non-parametric bootstrap method. There was a certain number of observations required of a dataset before GHG emissions reached an asymptotic value. Treating a coefficient (i.e., GHG emission factor) as a random variable did not alter the mean; however, it yielded higher uncertainty of GHG emissions compared to the case when treating a coefficient constant. The non-parametric bootstrap method reduces the variance of GHG. A mathematical model for estimating GHG emissions should treat the GHG emission factor as a random variable. When the estimated probability density function (PDF) of the original dataset is incorrect, the nonparametric bootstrap method, not the parametric MCS method, should be the method of choice for the uncertainty analysis of GHG emissions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje