Autor: |
Heba Adel Abdelkarim, Eman Rawshdeh, Edris Rawashdeh |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Axioms, Vol 11, Iss 7, p 349 (2022) |
Druh dokumentu: |
article |
ISSN: |
2075-1680 |
DOI: |
10.3390/axioms11070349 |
Popis: |
Let R be a commutative ring with unity. The unit graph G(R) is defined such that the vertex set of G(R) is the set of all elements of R, and two distinct vertices are adjacent if their sum is a unit in R. In this paper, we show that for each prime, p,G(Zp) and G(Z2p) are eigensharp graphs. Likewise, we show that the unit graph associated with the ring Zp[x]∕x2 is an eigensharp graph. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|