Autor: |
Mateusz Chmurski, Gianfranco Mauro, Avik Santra, Mariusz Zubert, Gökberk Dagasan |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Sensors, Vol 21, Iss 21, p 7298 (2021) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s21217298 |
Popis: |
The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the deployment of such systems is often not performed in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper presents a novel hand gesture recognition system based on frequency-modulated continuous wave (FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems. First of all, the paper introduces a method to simplify radar preprocessing while preserving the main information of the performed gestures. Then, a deep neural classifier with the novel Depthwise Expansion Module based on the depthwise separable convolutions is presented. The introduced classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts eight different hand gestures performed by five users, offering a classification accuracy of 98.13% while operating in a low-power and resource-constrained environment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|