Urban residential building stock synthetic datasets for building energy performance analysis

Autor: Usman Ali, Sobia Bano, Mohammad Haris Shamsi, Divyanshu Sood, Cathal Hoare, Wangda Zuo, Neil Hewitt, James O'Donnell
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Data in Brief, Vol 53, Iss , Pp 110241- (2024)
Druh dokumentu: article
ISSN: 2352-3409
DOI: 10.1016/j.dib.2024.110241
Popis: The urban building stock dataset consists of synthetic input and output data for the energy simulation of one million buildings. The dataset consists of four different residential types, namely: terraced, detached, semi-detached, and bungalow. Constructing this buildings dataset requires conversion, categorization, extraction, and analytical processes. The dataset (in .csv) format comprises 19 input parameters, including advanced features such as HVAC system parameters, building fabric (walls, roofs, floors, door, and windows) U-values, and renewable system parameters. The primary output parameter in the dataset is Energy Use Intensity (EUI in kWh/(m2*year)), along with Energy Performance Certificate (EPC) labels categorized on an A to G rating scale. Additionally, the dataset contains end-use demand output parameters for heating and lighting, which are crucial output parameters. jEPlus, a parametric tool, is coupled with EnergyPlus and DesignBuilder templates to facilitate physics-based parametric simulations for generating the dataset. The dataset can be a valuable resource for researchers, practitioners, and policymakers seeking to enhance sustainability and efficiency in urban building environments. Furthermore, dataset holds immense potential for future research in the field of building energy analysis and modeling.
Databáze: Directory of Open Access Journals