Popis: |
ABSTRACT The presence of intermittently dispersed insertion sequences and transposases in the Mycobacterium tuberculosis (Mtb) genome makes intra-genome recombination events inevitable. Understanding their effect on the gene repertoires (GR), which may contribute to the development of drug-resistant Mtb, is critical. In this study, publicly available WGS data of clinical Mtb isolates (endemic region n = 2,601; non-endemic region n = 1,130) were de novo assembled, filtered, scaffolded into assemblies, and functionally annotated. Out of 2,601 Mtb WGS data sets from endemic regions, 2,184 (drug resistant/sensitive: 1,386/798) qualified as high quality. We identified 3,784 core genes, 123 softcore genes, 224 shell genes, and 762 cloud genes in the pangenome of Mtb clinical isolates from endemic regions. Sets of 33 and 39 genes showed positive and negative associations (P < 0.01) with drug resistance status, respectively. Gene ontology clustering showed compromised immunity to phages and impaired DNA repair in drug-resistant Mtb clinical isolates compared to the sensitive ones. Multidrug efflux pump repressor genes (Rv3830c and Rv3855c) and CRISPR genes (Rv2816c-19c) were absent in the drug-resistant Mtb. A separate WGS data analysis of drug-resistant Mtb clinical isolates from the Netherlands (n = 1130) also showed the absence of CRISPR genes (Rv2816c-17c). This study highlights the role of CRISPR genes in drug resistance development in Mtb clinical isolates and helps in understanding its evolutionary trajectory and as useful targets for diagnostics development.IMPORTANCEThe results from the present Pan-GWAS study comparing gene sets in drug-resistant and drug-sensitive Mtb clinical isolates revealed intricate presence-absence patterns of genes encoding DNA-binding proteins having gene regulatory as well as DNA modification and DNA repair roles. Apart from the genes with known functions, some uncharacterized and hypothetical genes that seem to have a potential role in drug resistance development in Mtb were identified. We have been able to extrapolate many findings of the present study with the existing literature on the molecular aspects of drug-resistant Mtb, further strengthening the relevance of the results presented in this study. |