Autor: |
Serena Doria, Radko Mesiar, Adam Šeliga |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 9, Iss 1, p 2 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math9010002 |
Popis: |
In this paper, we explore the use of aggregation functions in the construction of coherent upper previsions. Sub-additivity is one of the defining properties of a coherent upper prevision defined on a linear space of random variables and thus we introduce a new sub-additive transformation of aggregation functions, called a revenue transformation, whose output is a sub-additive aggregation function bounded below by the transformed aggregation function, if it exists. Method of constructing coherent upper previsions by means of shift-invariant, positively homogeneous and sub-additive aggregation functions is given and a full characterization of shift-invariant, positively homogeneous and idempotent aggregation functions on [0,∞[n is presented. Lastly, some concluding remarks are added. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|