The Robin problems for the coupled system of reaction–diffusion equations

Autor: Po-Chun Huang, Bo-Yu Pan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Boundary Value Problems, Vol 2024, Iss 1, Pp 1-37 (2024)
Druh dokumentu: article
ISSN: 1687-2770
DOI: 10.1186/s13661-024-01835-5
Popis: Abstract This article investigates the local well-posedness of Turing-type reaction–diffusion equations with Robin boundary conditions in the Sobolev space. Utilizing the Hadamard norm, we derive estimates for Fokas unified transform solutions for linear initial-boundary value problems subject to external forces. Subsequently, we demonstrate that the iteration map, defined by the unified transform solutions and incorporating nonlinearity instead of external forces, acts as a contraction map within an appropriate solution space. Our conclusive result is established through the application of the contraction mapping theorem.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje