Autor: |
Qing Lu, Linlan Yu, Congxu Zhu |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 14, Iss 2, p 373 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym14020373 |
Popis: |
In the present work, a neotype chaotic product trigonometric map (PTM) system is proposed. We demonstrate the chaotic characteristics of a PTM system by using a series of complexity criteria, such as bifurcation diagrams, Lyapunov exponents, approximate entropy, permutation entropy, time-series diagrams, cobweb graphs, and NIST tests. It is proved that the PTM system has a wider chaotic parameter interval and more complex chaotic performance than the existing sine map system. In addition, a novel PTM based symmetric image encryption scheme is proposed, in which the key is related to the hash value of the image. The algorithm realizes the encryption strategy of one-graph-one-key, which can resist plaintext attack. A two-dimensional coordinate traversal matrix for image scrambling and a one-dimensional integer traversal sequence for image pixel value transformation encryption are generated by the pseudo-random integer generator (PRING). Security analysis and various simulation test results show that the proposed image encryption scheme has good cryptographic performance and high time efficiency. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|