Irradiance Nowcasting by Means of Deep-Learning Analysis of Infrared Images

Autor: Alessandro Niccolai, Seyedamir Orooji, Andrea Matteri, Emanuele Ogliari, Sonia Leva
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Forecasting, Vol 4, Iss 1, Pp 338-348 (2022)
Druh dokumentu: article
ISSN: 2571-9394
DOI: 10.3390/forecast4010019
Popis: This work proposes and evaluates a method for the nowcasting of solar irradiance variability in multiple time horizons, namely 5, 10, and 15 min ahead. The method is based on a Convolutional Neural Network structure that exploits infrared sky images acquired through an All-Sky Imager to estimate the range of possible values that the Clear-Sky Index will possibly assume over a selected forecast horizon. All data available, from the infrared images to the measurements of Global Horizontal Irradiance (necessary in order to compute Clear-Sky Index), are acquired at SolarTechLAB in Politecnico di Milano. The proposed method demonstrated a discrete performance level, with an accuracy peak for the 5 min time horizon, where about 65% of the available samples are attributed to the correct range of Clear-Sky Index values.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje