Autor: |
Cristiana Paina, Mattia Fois, Torben Asp, Just Jensen, Pernille Bjarup Hansen, Palle Duun Rohde |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-56353-2 |
Popis: |
Abstract Genotype by environment interactions (G × E) are frequently observed in herbage production. Understanding the underlying biological mechanisms is important for achieving stable and predictive outputs across production environments. The microbiome is gaining increasing attention as a significant contributing factor to G × E. Here, we focused on the soil microbiome of perennial ryegrass (Lolium perenne L.) grown under field conditions and investigated the soil microbiome variation across different ryegrass varieties to assess whether environmental factors, such as seasonality and nitrogen levels, affect the microbial community. We identified bacteria, archaea, and fungi operational taxonomic units (OTUs) and showed that seasonality and ryegrass variety were the two factors explaining the largest fraction of the soil microbiome diversity. The strong and significant variety-by-treatment-by-seasonal cut interaction for ryegrass dry matter was associated with the number of unique OTUs within each sample. We identified seven OTUs associated with ryegrass dry matter variation. An OTU belonging to the Solirubrobacterales (Thermoleophilales) order was associated with increased plant biomass, supporting the possibility of developing engineered microbiomes for increased plant yield. Our results indicate the importance of incorporating different layers of biological data, such as genomic and soil microbiome data to improve the prediction accuracy of plant phenotypes grown across heterogeneous environments. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|