New Physics Agnostic Selections For New Physics Searches

Autor: Woźniak Kinga Anna, Cerri Olmo, Duarte Javier M., Möller Torsten, Ngadiuba Jennifer, Nguyen Thong Q., Pierini Maurizio, Spiropulu Maria, Vlimant Jean-Roch
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: EPJ Web of Conferences, Vol 245, p 06039 (2020)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202024506039
Popis: We discuss a model-independent strategy for boosting new physics searches with the help of an unsupervised anomaly detection algorithm. Prior to a search, each input event is preprocessed by the algorithm - a variational autoencoder (VAE). Based on the loss assigned to each event, input data can be split into a background control sample and a signal enriched sample. Following this strategy, one can enhance the sensitivity to new physics with no assumption on the underlying new physics signature. Our results show that a typical BSM search on the signal enriched group is more sensitive than an equivalent search on the original dataset.
Databáze: Directory of Open Access Journals