An improved manta ray foraging optimization algorithm

Autor: Pengju Qu, Qingni Yuan, Feilong Du, Qingyang Gao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-35 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-59960-1
Popis: Abstract The Manta Ray Foraging Optimization Algorithm (MRFO) is a metaheuristic algorithm for solving real-world problems. However, MRFO suffers from slow convergence precision and is easily trapped in a local optimal. Hence, to overcome these deficiencies, this paper proposes an Improved MRFO algorithm (IMRFO) that employs Tent chaotic mapping, the bidirectional search strategy, and the Levy flight strategy. Among these strategies, Tent chaotic mapping distributes the manta ray more uniformly and improves the quality of the initial solution, while the bidirectional search strategy expands the search area. The Levy flight strategy strengthens the algorithm’s ability to escape from local optimal. To verify IMRFO’s performance, the algorithm is compared with 10 other algorithms on 23 benchmark functions, the CEC2017 and CEC2022 benchmark suites, and five engineering problems, with statistical analysis illustrating the superiority and significance of the difference between IMRFO and other algorithms. The results indicate that the IMRFO outperforms the competitor optimization algorithms.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje