Autor: |
Hongfeng Yu, Yongqian Ding, Pei Zhang, Furui Zhang, Xianglin Dou, Zhengmeng Chen |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Plant Methods, Vol 20, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
1746-4811 |
DOI: |
10.1186/s13007-024-01281-5 |
Popis: |
Abstract Background Crop phenotype extraction devices based on multiband narrowband spectral images can effectively detect the physiological and biochemical parameters of crops, which plays a positive role in guiding the development of precision agriculture. Although the narrowband spectral image canopy extraction method is a fundamental algorithm for the development of crop phenotype extraction devices, developing a highly real-time and embedded integrated narrowband spectral image canopy extraction method remains challenging owing to the small difference between the narrowband spectral image canopy and background. Methods This study identified and validated the skewed distribution of leaf color gradation in narrowband spectral images. By introducing kurtosis and skewness feature parameters, a canopy extraction method based on a superpixel skewed color gradation distribution was proposed for narrowband spectral images. In addition, different types of parameter combinations were input to construct two classifier models, and the contribution of the skewed distribution feature parameters to the proposed canopy extraction method was evaluated to confirm the effectiveness of introducing skewed leaf color skewed distribution features. Results Leaf color gradient skewness verification was conducted on 4200 superpixels of different sizes, and 4190 superpixels conformed to the skewness distribution. The intersection over union (IoU) between the soil background and canopy of the expanded leaf color skewed distribution feature parameters was 90.41%, whereas that of the traditional Otsu segmentation algorithm was 77.95%. The canopy extraction method used in this study performed significantly better than the traditional threshold segmentation method, using the same training set, Y1 (without skewed parameters) and Y2 (with skewed parameters) Bayesian classifier models were constructed. After evaluating the segmentation effect of introducing skewed parameters, the average classification accuracies Acc_Y1 of the Y1 model and Acc_Y2 of the Y2 model were 72.02% and 91.76%, respectively, under the same test conditions. This indicates that introducing leaf color gradient skewed parameters can significantly improve the accuracy of Bayesian classifiers for narrowband spectral images of the canopy and soil background. Conclusions The introduction of kurtosis and skewness as leaf color skewness feature parameters can expand the expression of leaf color information in narrowband spectral images. The narrowband spectral image canopy extraction method based on superpixel color skewness distribution features can effectively segment the canopy and soil background in narrowband spectral images, thereby providing a new solution for crop canopy phenotype feature extraction. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|