Model Evaluation and Intercomparison of Marine Warm Low Cloud Fractions With Neural Network Ensembles

Autor: Yao‐Sheng Chen, Takanobu Yamaguchi, Peter A. Bogenschutz, Graham Feingold
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Advances in Modeling Earth Systems, Vol 13, Iss 11, Pp n/a-n/a (2021)
Druh dokumentu: article
ISSN: 1942-2466
DOI: 10.1029/2021MS002625
Popis: Abstract Low cloud fractions (LCFs) and meteorological factors (MFs) over an oceanic region containing multiple cloud regimes are examined for three data sets: one Energy Exascale Earth System Model (E3SM) simulation with the default 72‐layer vertical grid (E3SM72), another one with 8‐times vertical resolution via the Framework for Improvement by Vertical Enhancement (E3SM×8), and one with MFs from ERA5 reanalysis and LCFs from the CERES SSF product (ERA5‐SSF). Neural networks (NNs) are trained to capture the relationship between MFs and LCF and to select the best‐performing MF subsets for predicting LCF. NN ensembles are used to (a) confirm the performance of selected MF subsets, (b) to serve as proxy models for each data set to predict LCFs for MFs from all data sets, and (c) to classify MFs into those in shared and uniquely occupied MF subspaces. Overall, E3SM72 and E3SM×8 have large fractions of MFs in shared MF subspace, but less so near the Californian and Peruvian stratocumulus decks. E3SM×8 and ERA5 have small fractions of MFs in shared MF subspace but greater than E3SM72 and ERA5, especially in the Southeast Pacific. The differences in LCFs between three pairs of data sets are decomposed into those associated with the differences in the LCF‐MF relationship and those involving different MFs. Given the same MFs, LCFs produced by E3SM×8 are greater than those produced by E3SM72 but are still different from those in ERA5‐SSF. In general, the shift in MFs dominates the difference in the LCFs.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje