Innovations in Stroke Identification: A Machine Learning-Based Diagnostic Model Using Neuroimages

Autor: Muhammad Asim Saleem, Ashir Javeed, Wasan Akarathanawat, Aurauma Chutinet, Nijasri Charnnarong Suwanwela, Widhyakorn Asdornwised, Surachai Chaitusaney, Sunchai Deelertpaiboon, Wattanasak Srisiri, Watit Benjapolakul, Pasu Kaewplung
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: IEEE Access, Vol 12, Pp 35754-35764 (2024)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2024.3369673
Popis: Cerebrovascular diseases such as stroke are among the most common causes of death and disability worldwide and are preventable and treatable. Early detection of strokes and their rapid intervention play an important role in reducing the burden of disease and improving clinical outcomes. In recent years, machine learning methods have attracted a lot of attention as they can be used to detect strokes. The aim of this study is to identify reliable methods, algorithms, and features that help medical professionals make informed decisions about stroke treatment and prevention. To achieve this goal, we have developed an early stroke detection system based on CT images of the brain coupled with a genetic algorithm and a bidirectional long short-term Memory (BiLSTM) to detect strokes at a very early stage. For image classification, a genetic approach based on neural networks is used to select the most relevant features for classification. The BiLSTM model is then fed with these features. Cross-validation was used to evaluate the accuracy of the diagnostic system, precision, recall, F1 score, ROC (Receiver Operating Characteristic Curve), and AUC (Area Under The Curve). All of these metrics were used to determine the system’s overall effectiveness. The proposed diagnostic system achieved an accuracy of 96.5%. We also compared the performance of the proposed model with Logistic Regression, Decision Trees, Random Forests, Naive Bayes, and Support Vector Machines. With the proposed diagnosis system, physicians can make an informed decision about stroke.
Databáze: Directory of Open Access Journals