Popis: |
ABSTRACT: The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows. |