Neuropeptide Y Plays an Important Role in the Relationship Between Brain Glucose Metabolism and Brown Adipose Tissue Activity in Healthy Adults: A PET/CT Study

Autor: Qiongyue Zhang, Qing Miao, Yehong Yang, Jiaying Lu, Huiwei Zhang, Yonghao Feng, Wei Wu, Xiaoming Zhu, Boni Xiang, Quanya Sun, Yihui Guan, Yiming Li, Chuantao Zuo, Hongying Ye
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Frontiers in Endocrinology, Vol 12 (2021)
Druh dokumentu: article
ISSN: 1664-2392
DOI: 10.3389/fendo.2021.694162
Popis: IntroductionBrown adipose tissue (BAT) becomes the favorite target for preventing and treating metabolic diseases because the activated BAT can produce heat and consume energy. The brain, especially the hypothalamus, which secretes Neuropeptide Y (NPY), is speculated to regulate BAT activity. However, whether NPY is involved in BAT activity’s central regulation in humans remains unclear. Thus, it’s essential to explore the relationship between brain glucose metabolism and human BAT activity.MethodsA controlled study with a large sample of healthy adults used Positron emission tomography/computed tomography (PET/CT) to noninvasively investigate BAT’s activity and brain glucose metabolism in vivo. Eighty healthy adults with activated BAT according to the PET/CT scan volunteered to be the BAT positive group, while 80 healthy adults without activated BAT but with the same gender, similar age, and BMI, scanning on the same day, were recruited as the control (BAT negative). We use Statistical parametric mapping (SPM) to analyze the brain image data, Picture Archiving & Communication System (PACS), and PET/CT Viewer software to calculate the semi-quantitative values of brain glucose metabolism and BAT activity. ELISA tested the levels of fasting plasma NPY. The multiple linear regression models were used to analyze the correlation between brain glucose metabolism, the level of NPY, and the BAT activity in the BAT positive group.Results(1) Compared with controls, BAT positive group showed significant metabolic decreases mainly in the right Insula (BA13a, BA13b) and the right claustrum (uncorrected P 0.05), while the correlation between the BA13a metabolic values and BAT activity still was significant (P< 0.05).ConclusionsRegional brain glucose metabolism is closely related to healthy adults’ BAT activity, which may be mediated by NPY.
Databáze: Directory of Open Access Journals