Fe and Mg Isotope Compositions Indicate a Hybrid Mantle Source for Young Chang’E 5 Mare Basalts
Autor: | Yun Jiang, Jinting Kang, Shiyong Liao, Stephen M. Elardo, Keqing Zong, Sijie Wang, Chang Nie, Peiyi Li, Zongjun Yin, Fang Huang, Weibiao Hsu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | The Astrophysical Journal Letters, Vol 945, Iss 2, p L26 (2023) |
Druh dokumentu: | article |
ISSN: | 2041-8213 2041-8205 |
DOI: | 10.3847/2041-8213/acbd31 |
Popis: | The Chang’E 5 (CE-5) samples represent the youngest mare basalt ever known and provide an access into the late lunar evolution. Recent studies have revealed that CE-5 basalts are the most evolved lunar basalts, yet controversy remains over the nature of their mantle sources. Here we combine Fe and Mg isotope analyses with a comprehensive study of petrology and mineralogy on two CE-5 basalt clasts. These two clasts have a very low Mg# (∼29) and show similar Mg isotope compositions to Apollo low-Ti mare basalts as well as intermediate TiO _2 and Fe isotope compositions between low-Ti and high-Ti mare basalts. Fractional crystallization or evaporation during impact cannot produce such geochemical signatures that otherwise indicate a hybrid mantle source that incorporates both early- and late-stage lunar magma ocean (LMO) cumulates. Such a hybrid mantle source would be also compatible with the KREEP-like Rare Earth Elements pattern of CE-5 basalts. Overall, our new Fe–Mg isotope data highlight the role of late LMO cumulate for the generation of young lunar volcanism. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |