Universality in Graph Properties with Degree Restrictions

Autor: Broere Izak, Heidema Johannes, Mihók Peter
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Discussiones Mathematicae Graph Theory, Vol 33, Iss 3, Pp 477-492 (2013)
Druh dokumentu: article
ISSN: 2083-5892
DOI: 10.7151/dmgt.1696
Popis: Rado constructed a (simple) denumerable graph R with the positive integers as vertex set with the following edges: For given m and n with m < n, m is adjacent to n if n has a 1 in the m’th position of its binary expansion. It is well known that R is a universal graph in the set of all countable graphs (since every graph in is isomorphic to an induced subgraph of R). A brief overview of known universality results for some induced-hereditary subsets of is provided. We then construct a k-degenerate graph which is universal for the induced-hereditary property of finite k-degenerate graphs. In order to attempt the corresponding problem for the property of countable graphs with colouring number at most k + 1, the notion of a property with assignment is introduced and studied. Using this notion, we are able to construct a universal graph in this graph property and investigate its attributes.
Databáze: Directory of Open Access Journals