Modeling clinical trajectory status of critically ill COVID-19 patients over time: A method for analyzing discrete longitudinal and ordinal outcomes

Autor: Michael J. Ward, David J. Douin, Wu Gong, Adit A. Ginde, Catherine L. Hough, Matthew C. Exline, Mark W. Tenforde, William B. Stubblefield, Jay S. Steingrub, Matthew E. Prekker, Akram Khan, D. Clark Files, Kevin W. Gibbs, Todd W. Rice, Jonathan D. Casey, Daniel J. Henning, Jennifer G. Wilson, Samuel M. Brown, Manish M. Patel, Wesley H. Self, Christopher J. Lindsell, for the Influenza and Other Viruses in the Acutely Ill (IVY) Network
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Clinical and Translational Science, Vol 6 (2022)
Druh dokumentu: article
ISSN: 2059-8661
DOI: 10.1017/cts.2022.393
Popis: Early in the COVID-19 pandemic, the World Health Organization stressed the importance of daily clinical assessments of infected patients, yet current approaches frequently consider cross-sectional timepoints, cumulative summary measures, or time-to-event analyses. Statistical methods are available that make use of the rich information content of longitudinal assessments. We demonstrate the use of a multistate transition model to assess the dynamic nature of COVID-19-associated critical illness using daily evaluations of COVID-19 patients from 9 academic hospitals. We describe the accessibility and utility of methods that consider the clinical trajectory of critically ill COVID-19 patients.
Databáze: Directory of Open Access Journals