Apoptosis induction capability of silver nanoparticles capped with Acorus calamus L. and Dalbergia sissoo Roxb. Ex DC. against lung carcinoma cells

Autor: Anjali B. Thakkar, R.B. Subramanian, Vasudev R. Thakkar, Sandip V. Bhatt, Sunil Chaki, Yati H. Vaidya, Vikas Patel, Parth Thakor
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 2, Pp e24400- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e24400
Popis: Silver nanoparticles (AgNPs) were prepared using a one-step reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4) in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Plant extracts from D. sissoo (DS) and A. calamus L. (AC) leaves were incorporated during the synthesis process. The crystalline nature of the AgNPs was confirmed through X-ray diffraction (XRD), confirming the face-centered cubic structure, with a lattice constant of 4.08 Å and a crystallite size of 18 nm. Field Emission Gun Transmission Electron Microscopy (FEG-TEM) revealed spherical AgNPs (10–20 nm) with evident PVP adsorption, leading to size changes and agglomeration. UV–Vis spectra showed a surface plasmon resonance (SPR) band at 417 nm for AgNPs and a redshift to 420 nm for PVP-coated AgNPs, indicating successful synthesis. Fourier Transform Infrared Spectroscopy (FTIR) identified functional groups and drug-loaded samples exhibited characteristic peaks, confirming effective drug loading. The anti-cancer potential of synthesized NPs was assessed by MTT assay in human adenocarcinoma lung cancer (A549) and lung normal cells (WI-38) cells. IC50 values for all three NPs (AgPVP NPs, DS@AgPVP NPs, and AC@AgPVP NPs) were 41.60 ± 2.35, 14.25 ± 1.85, and 21.75 ± 0.498 μg/ml on A549 cells, and 420.69 ± 2.87, 408.20 ± 3.41, and 391.80 ± 1.55 μg/ml respectively. Furthermore, the NPs generated Reactive Oxygen Species (ROS) and altered the mitochondrial membrane potential (MMP). Differential staining techniques were used to investigate the apoptosis-inducing properties of the three synthesized NPs. The colony formation assay indicated that nanoparticle therapy prevented cancer cell invasion. Finally, Real-Time PCR (RT-PCR) analysis predicted the expression pattern of many apoptosis-related genes (Caspase 3, 9, and 8).
Databáze: Directory of Open Access Journals