Autor: |
Hyeonjeong Kim, Songyi Yoo, In-Man Kang, Seongjae Cho, Wookyung Sun, Hyungsoon Shin |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Micromachines, Vol 11, Iss 2, p 228 (2020) |
Druh dokumentu: |
article |
ISSN: |
2072-666X |
DOI: |
10.3390/mi11020228 |
Popis: |
Recently, one-transistor dynamic random-access memory (1T-DRAM) cells having a polysilicon body (poly-Si 1T-DRAM) have attracted attention as candidates to replace conventional one-transistor one-capacitor dynamic random-access memory (1T-1C DRAM). Poly-Si 1T-DRAM enables the cost-effective implementation of a silicon-on-insulator (SOI) structure and a three-dimensional (3D) stacked architecture for increasing integration density. However, studies on the transient characteristics of poly-Si 1T-DRAM are still lacking. In this paper, with TCAD simulation, we examine the differences between the memory mechanisms in poly-Si and silicon body 1T-DRAM. A silicon 1T-DRAM cell’s data state is determined by the number of holes stored in a floating body (FB), while a poly-Si 1T-DRAM cell’s state depends on the number of electrons trapped in its grain boundary (GB). This means that a poly-Si 1T-DRAM can perform memory operations by using GB as a storage region in thin body devices with a small FB area. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|