On a system of $m$ difference equations having exponential terms

Autor: Garyfalos Papaschinopoulos, N. Psarros, K.B. Papadopoulos
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 5, Pp 1-13 (2015)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2015.1.5
Popis: In this paper we study the asymptotic behavior of the positive solutions of a cyclic system of the following $m$ difference equations: \begin{align*} x^{(i)}_{n+1}&=a_ix_n^{(i+1)}+b_i x^{(i)}_{n-1}e^{{-x^{(i+1)}_n}},\qquad i=1,2,\ldots, m-1,\\ x^{(m)}_{n+1}&=a_mx^{(1)}_n+b_m x^{(m)}_{n-1}e^{{-x^{(1)}_n}}, \end{align*} where $n=0,1,\ldots$, and $a_i,\ b_i$, $i=1,2,\ldots,m$ are positive constants and the initial values $x^{(i)}_{-1}, x^{(i)}_0$, $i=1,2,\ldots,m$ are positive numbers.
Databáze: Directory of Open Access Journals