On a system of $m$ difference equations having exponential terms
Autor: | Garyfalos Papaschinopoulos, N. Psarros, K.B. Papadopoulos |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 5, Pp 1-13 (2015) |
Druh dokumentu: | article |
ISSN: | 1417-3875 |
DOI: | 10.14232/ejqtde.2015.1.5 |
Popis: | In this paper we study the asymptotic behavior of the positive solutions of a cyclic system of the following $m$ difference equations: \begin{align*} x^{(i)}_{n+1}&=a_ix_n^{(i+1)}+b_i x^{(i)}_{n-1}e^{{-x^{(i+1)}_n}},\qquad i=1,2,\ldots, m-1,\\ x^{(m)}_{n+1}&=a_mx^{(1)}_n+b_m x^{(m)}_{n-1}e^{{-x^{(1)}_n}}, \end{align*} where $n=0,1,\ldots$, and $a_i,\ b_i$, $i=1,2,\ldots,m$ are positive constants and the initial values $x^{(i)}_{-1}, x^{(i)}_0$, $i=1,2,\ldots,m$ are positive numbers. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |