Autor: |
Neranjaka Jayarathne, Erik M. Bollt |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 1, Pp 998-1022 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2024050?viewType=HTML |
Popis: |
Reduced order modelling relies on representing complex dynamical systems using simplified modes, which can be achieved through the Koopman operator(KO) analysis. However, computing Koopman eigenpairs for high-dimensional observable data can be inefficient. This paper proposes using deep autoencoders(AE), a type of deep learning technique, to perform nonlinear geometric transformations on raw data before computing Koopman eigenvectors. The encoded data produced by the deep AE is diffeomorphic to a manifold of the dynamical system and has a significantly lower dimension than the raw data. To handle high-dimensional time series data, Takens' time delay embedding is presented as a preprocessing technique. The paper concludes by presenting examples of these techniques in action. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|