Autoencoding for the 'Good Dictionary' of eigenpairs of the Koopman operator

Autor: Neranjaka Jayarathne, Erik M. Bollt
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 1, Pp 998-1022 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024050?viewType=HTML
Popis: Reduced order modelling relies on representing complex dynamical systems using simplified modes, which can be achieved through the Koopman operator(KO) analysis. However, computing Koopman eigenpairs for high-dimensional observable data can be inefficient. This paper proposes using deep autoencoders(AE), a type of deep learning technique, to perform nonlinear geometric transformations on raw data before computing Koopman eigenvectors. The encoded data produced by the deep AE is diffeomorphic to a manifold of the dynamical system and has a significantly lower dimension than the raw data. To handle high-dimensional time series data, Takens' time delay embedding is presented as a preprocessing technique. The paper concludes by presenting examples of these techniques in action.
Databáze: Directory of Open Access Journals