КОНТРФАКТУАЛЬНА ТЕМПОРАЛЬНА МОДЕЛЬ ПРИЧИННО-НАСЛІДКОВИХ ЗВ'ЯЗКІВ ДЛЯ ПОБУДОВИ ПОЯСНЕНЬ В ІНТЕЛЕКТУАЛЬНИХ СИСТЕМАХ

Autor: Serhii Chalyi, Volodymyr Leshchynskyi, Irina Leshchynska
Jazyk: English<br />Russian<br />Ukrainian
Rok vydání: 2021
Předmět:
Zdroj: Вісник Національного технічного університету "ХПÌ": Системний аналіз, управління та інформаційні технології, Iss 2 (6), Pp 41-46 (2021)
Druh dokumentu: article
ISSN: 2079-0023
2410-2857
DOI: 10.20998/2079-0023.2021.02.07
Popis: Предметом дослідження є процеси побудови пояснень на основі причинно-наслідкових зв'язків між станами або діями інтелектуальної системи. Пояснення представляє собою знання про послідовність причин та наслідків, які визначають процес та результат роботи інтелектуальної інформаційної системи. Мета роботи полягає в розробці контрфактуальної темпоральної моделі причинно-наслідкових зв'язків у складі пояснення процесу функціонування інтелектуальної системи з тим, щоб забезпечити виявлення каузальних залежностей на основі аналізу журналів поведінки такої системи. Для досягнення сформульованої мети вирішуються такі задачі: визначення темпоральних властивостей контрфактуального опису причинно-наслідкових зв'язків між діями або станами інтелектуальної інформаційної системи; розробка темпоральної моделі каузальних зв'язків, що враховує як факти виникнення подій в інтелектуальній системі, так і можливість виникнення подій, що не впливають на формування поточного рішення. Висновки. Виконано структуризацію темпоральних властивостей каузальних зв'язків для пар подій, які виникають послідовно в часі, або мають проміжні події. Такі зв'язки представлено альтернативними причинно-наслідковими зв'язками з використанням темпоральних операторів «Next» та «Future», що дає можливість реалізувати контрфактуальний підхід до представлення причинності. Запропоновано контрфактуальну темпоральну модель причинно-наслідкових зв'язків, яка визначає детерміновані каузальні зв'язки для пар послідовних подій та пар подій, між якими є інші події, що визначає властивість транзитивності таких залежностей і, відповідно, створює умови для опису послідовності причин та наслідків у складі пояснення в інтелектуальній системі з заданим ступенем деталізації. Модель забезпечує можливість визначення причинно-наслідкових зв'язків, між якими є проміжні події, які не впливають на кінцевий результат роботи інтелектуальної інформаційної системи.
Databáze: Directory of Open Access Journals