Autor: |
Motoi Kanagawa, Kazuhiro Kobayashi, Michiko Tajiri, Hiroshi Manya, Atsushi Kuga, Yoshiki Yamaguchi, Keiko Akasaka-Manya, Jun-ichi Furukawa, Mamoru Mizuno, Hiroko Kawakami, Yasuro Shinohara, Yoshinao Wada, Tamao Endo, Tatsushi Toda |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 14, Iss 9, Pp 2209-2223 (2016) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2016.02.017 |
Popis: |
Glycosylation is an essential post-translational modification that underlies many biological processes and diseases. α-dystroglycan (α-DG) is a receptor for matrix and synaptic proteins that causes muscular dystrophy and lissencephaly upon its abnormal glycosylation (α-dystroglycanopathies). Here we identify the glycan unit ribitol 5-phosphate (Rbo5P), a phosphoric ester of pentose alcohol, in α-DG. Rbo5P forms a tandem repeat and functions as a scaffold for the formation of the ligand-binding moiety. We show that enzyme activities of three major α-dystroglycanopathy-causing proteins are involved in the synthesis of tandem Rbo5P. Isoprenoid synthase domain-containing (ISPD) is cytidine diphosphate ribitol (CDP-Rbo) synthase. Fukutin and fukutin-related protein are sequentially acting Rbo5P transferases that use CDP-Rbo. Consequently, Rbo5P glycosylation is defective in α-dystroglycanopathy models. Supplementation of CDP-Rbo to ISPD-deficient cells restored α-DG glycosylation. These findings establish the molecular basis of mammalian Rbo5P glycosylation and provide insight into pathogenesis and therapeutic strategies in α-DG-associated diseases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|