Autor: |
Yinzhen Mei, Chengxiao Guo |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 7, Pp 19822-19842 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2024968?viewType=HTML |
Popis: |
The degree Kirchhoff index of graph $ G $ is defined as $ Kf^{*}(G) = \sum\limits_{{u, v}\subseteq V(G)}d(u)d(v)r_{G}(u, v) $, where $ d(u) $ is the degree of vertex $ u $ and $ r_{G}(u, v) $ is the resistance distance between the vertices $ u $ and $ v $. In this paper, we characterize bicyclic graphs with exactly two cycles having the minimum degree Kirchhoff index of order $ n\geq5 $. Moreover, we obtain the minimum degree Kirchhoff index on bicyclic graphs of order $ n\geq4 $ with exactly three cycles, and all bicyclic graphs of order $ n\geq4 $ where the minimum degree Kirchhoff index has been obtained. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|