Autor: |
Guofang Wang, Juanling Wang, Wei Sun, Mingjing Huang, Jiancheng Zhang, Xuefang Huang, Wuping Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Agronomy, Vol 14, Iss 10, p 2195 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4395 |
DOI: |
10.3390/agronomy14102195 |
Popis: |
The region along the Great Wall is a typical dryland agricultural zone, serving as both a potential area for staple grain production and a key region for specialty crops like coarse grains and cool-climate vegetables. Studying the characteristics of drought during the spring sowing period is crucial for developing diversified planting strategies and ensuring food security. This study analyzes the drought conditions along the Great Wall from 1960 to 2023, revealing the spatial and temporal distribution of drought in the region and quantifying the impact of climate change on drought frequency and intensity. By doing so, it fills a gap in the existing drought research, which often lacks the long-term, multi-dimensional analysis of spring sowing drought characteristics. Using daily meteorological data from April 20 to May 20 during the spring sowing period between 1960 and 2023, the study employs the Meteorological Composite Drought Index (MCI) to quantitatively identify drought conditions and examine the spatial and temporal evolution of drought in the region. The results show that, on a daily scale, the frequency of mild and moderate droughts is 60.45% and 25.19%, respectively, with no occurrences of severe or extreme drought. On an annual scale, the intensity of drought and the ratio of affected stations show an increasing trend, with a decrease in mild drought frequency and an increase in moderate and severe drought occurrences. Additionally, the spatial distribution of drought frequency follows a pattern of “higher in the east than in the west” and “higher in the north than in the south”. The study also finds that the migration of drought frequency centers shows a clear temporal evolution, with the center shifting southwestward from the 1960s to the 2000s, and then moving northeastward from the 2000s to 2023. These findings provide critical data support for optimizing agricultural drought resistance strategies and offer new insights for future research on the relationship between drought and climate change. It is suggested that agricultural practices and water resource management policies should be adjusted according to the spatial migration of drought centers, with a particular focus on optimizing drought mitigation measures during the spring sowing period. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|