Popis: |
To ensure well integrity, wellbore must be strongly cased using durable cement slurries with essential additives during downhole completion. The rubber materials that come from industrial waste are becoming extremely encouraged in the use as an additive in preparing cement slurries due to their growing environmental footprint. However, the proper design of cement slurry strongly depends on its rheological, mechanical, petrophysical, and creep properties, which can be altered by changing additives. This study aimed to examine the cement properties under alteration in different chemical admixtures to create efficient binding properties, and to estimate the optimum cement–rubber slurry composition for eco-sustainable completion. Three cement samples with different mesh sizes of the crumb rubber particles were prepared. This study examined the variation in rheological behaviors, elastic and failure characteristics, permeability, and creep behavior of the cement–rubber composites for petroleum well construction. The experimental study showed that the addition of 15% or more crumb rubber to the cement resulted in very thick slurries. Moreover, it was shown that the addition of crumb rubber with various particle sizes to the cement reduced the strength by more than 50%, especially for a higher amount of rubber added. It was also revealed that the addition of a superplasticizer resulted in an 11% increase in compressive strength. The results showed that cement–crumb-rubber composites with 12% by weight of cement (BWOC) represented the optimum composite, and considerably improved the properties of the cement slurry. Water-permeability tests indicated the addition of 12% BWOC with 200-mesh crumb rubber decreased the permeability by nearly 64% compared to the base cement. Creep tests at five different stress levels illustrated that the neat cement was brittle and did not experience strain recovery at all stress levels. Cement slurries with the largest rubber-particle size were elastic and demonstrated the highest amount of strain recovery. Finally, a relationship was established between the permeability, average strain, and mesh size of the rubber particles, which offered the strain recovery, satisfied the zonal isolation, and consequently reduced the microannulus problem to ensure the cement’s integrity. |