Pharmacological evaluation of anti-inflammatory, antipyretic, analgesic, and antioxidant activities of Castanopsis costata leaf fractions (water, ethyl acetate, and n-hexane fractions): the potential medicinal plants from North Sumatra, Indonesia
Autor: | Maulana Yusuf Alkandahri, Asman Sadino, Barolym Tri Pamungkas, Zulpakor Oktoba, Maya Arfania, Nia Yuniarsih, Eko Sri Wahyuningsih, Dea Eka Putri |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Research in Pharmaceutical Sciences, Vol 19, Iss 3, Pp 251-266 (2024) |
Druh dokumentu: | article |
ISSN: | 1735-5362 1735-9414 |
DOI: | 10.4103/RPS.RPS_201_23 |
Popis: | Background and purpose: Inflammation, fever, and pain can be associated with several diseases, and the synthetic drugs used in the treatment of these conditions often have severe side effects. As a result, there is a need for effective, economical, and safe alternative drugs, such as those derived from medicinal plants. Therefore, this study aimed to evaluate the anti-inflammatory, antipyretic, analgesic, and antioxidant activities of Castanopsis costata leaf fractions (CcLF), as well as its acute toxicity. Experimental approach: For anti-inflammatory, antipyretic, and analgesic tests, rats were given CcLF (WFCC, EAFcC, and n-HFCC) at 50 and 100 mg/kg, diclofenac sodium (10 mg/kg), paracetamol (150 mg/kg), aspirin (100 mg/kg), and tramadol (20 mg/kg). For the antioxidant activity test, various concentrations of CcLF were used ranging from 25 to 200 μg/mL. This study also looked into whether there could be any acute toxicity and histopathology of the liver, stomach, and kidneys in experimental animals. Findings/Results: The administration of CcLF significantly inhibited the increase in foot edema volume, and CcLF (EAFCC at 100 mg/kg) considerably decreased rectal temperature and was proportional to the standard drug paracetamol, and significantly inhibited pain sensation in various models. Additionally, CcLF showed strong antioxidant activity, and its administration at a dose limit of 5000 mg/kg/day did not show any toxic effects or death in test animals. Conclusions and implications: The results of the current confirmed that CcLF has demonstrated anti-inflammatory, antipyretic, analgesic, and antioxidant properties in experimental models, and is practically non-toxic. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |