The neuronal response at extended timescales: long-term correlations without long-term memory

Autor: Daniel eSoudry, Ron eMeir
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Frontiers in Computational Neuroscience, Vol 8 (2014)
Druh dokumentu: article
ISSN: 1662-5188
DOI: 10.3389/fncom.2014.00035
Popis: Long term temporal correlations frequently appear at many levels of neural activity. We show that when such correlations appear in isolated neurons, they indicate the existence of slow underlying processes and lead to explicit conditions on the dynamics of these processes. Moreover, although these slow processes can potentially store information for long times, we demonstrate that this does not imply that the neuron possesses a long memory of its input, even if these processes are bidirectionally coupled with neuronal response. We derive these results for a broad class of biophysical neuron models, and then fit a specific model to recent experiments. The model reproduces the experimental results, exhibiting long term (days-long) correlations due to the interaction between slow variables and internal fluctuations. However, its memory of the input decays on a timescale of minutes. We suggest experiments to test these predictions directly.
Databáze: Directory of Open Access Journals