Autor: |
Mikhail Sgibnev |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
AppliedMath, Vol 2, Iss 3, Pp 501-511 (2022) |
Druh dokumentu: |
article |
ISSN: |
2673-9909 |
DOI: |
10.3390/appliedmath2030029 |
Popis: |
We consider the inhomogeneous Wiener–Hopf equation whose kernel is a nonarithmetic probability distribution with positive mean. The inhomogeneous term behaves like a submultiplicative function. We establish asymptotic properties of the solution to which the successive approximations converge. These properties depend on the asymptotics of the submultiplicative function. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|