Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines

Autor: Jonas Jäger, Roman V. Krems
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-7 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-36144-5
Popis: Rigorous results about the real computational advantages of quantum machine learning are few. Here, the authors prove that a PROMISEBQP-complete problem can be expressed by variational quantum classifiers and quantum support vector machines, meaning that a quantum advantage can be achieved for all ML classification problems that cannot be classically solved in polynomial time.
Databáze: Directory of Open Access Journals