Solutions to mean curvature equations in weighted standard static spacetimes

Autor: Henrique F. de Lima, Andre F. A. Ramalho, Marco Antonio L. Velasquez
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2020, Iss 83,, Pp 1-19 (2020)
Druh dokumentu: article
ISSN: 1072-6691
Popis: In this article, we study the solutions for the mean curvature equation in a weighted standard static spacetime, $\mathbb{P}_f^n\times_\rho\mathbb{R}_1$, having a warping function $\rho$ whose weight function f does not depend on the parameter $t\in\mathbb{R}$. We establish a f-parabolicity criterion to study the rigidity of spacelike hypersurfaces immersed in $\mathbb{P}_f^n\times_\rho\mathbb{R}_1$ and, in particular, of entire Killing graphs constructed over the Riemannian base $\mathbb{P}^n$. Also we give applications to weighted standard static spacetimes of the type $\mathbb{G}^n\times_\rho\mathbb{R}_1$, where $\mathbb G^n$ is the Gaussian space.
Databáze: Directory of Open Access Journals