Boundedness of a class of rough maximal functions

Autor: Mohammed Ali, Omar Al-mohammed
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-12 (2018)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-018-1900-y
Popis: Abstract In this work, we obtain appropriate sharp bounds for a certain class of maximal operators along surfaces of revolution with kernels in Lq(Sn−1) $L^{q}(\mathbf{S}^{n-1})$, q>1 $q > 1$. By using these bounds and using an extrapolation argument, we establish the Lp $L^{p}$ boundedness of the maximal operators when their kernels are in L(logL)α(Sn−1) $L(\log L)^{\alpha}(\mathbf{S}^{n-1})$ or in the block space Bq0,α−1(Sn−1) $B^{0,\alpha-1}_{q} (\mathbf{S}^{n-1})$. Our main results represent significant improvements as well as natural extensions of what was known previously.
Databáze: Directory of Open Access Journals