Autor: |
Ruth DeFries, Shefang Liang, Ashwini Chhatre, Kyle Frankel Davis, Subimal Ghosh, Narasimha D. Rao, Deepti Singh |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-37109-w |
Popis: |
Abstract India is the world’s second largest producer of wheat, with more than 40% increase in production since 2000. Increasing temperatures raise concerns about wheat’s sensitivity to heat. Traditionally-grown sorghum is an alternative rabi (winter season) cereal, but area under sorghum production has declined more than 20% since 2000. We examine sensitivity of wheat and sorghum yields to historical temperature and compare water requirements in districts where both cereals are cultivated. Wheat yields are sensitive to increases in maximum daily temperature in multiple stages of the growing season, while sorghum does not display the same sensitivity. Crop water requirements (mm) are 1.4 times greater for wheat than sorghum, mainly due to extension of its growing season into summer. However, water footprints (m3 per ton) are approximately 15% less for wheat due to its higher yields. Sensitivity to future climate projections, without changes in management, suggests 5% decline in wheat yields and 12% increase in water footprints by 2040, compared with 4% increase in water footprint for sorghum. On balance, sorghum provides a climate-resilient alternative to wheat for expansion in rabi cereals. However, yields need to increase to make sorghum competitive for farmer profits and efficient use of land to provide nutrients. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|