Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts

Autor: Soshiro Ogata, Misa Takegami, Taira Ozaki, Takahiro Nakashima, Daisuke Onozuka, Shunsuke Murata, Yuriko Nakaoku, Koyu Suzuki, Akihito Hagihara, Teruo Noguchi, Koji Iihara, Keiichi Kitazume, Tohru Morioka, Shin Yamazaki, Takahiro Yoshida, Yoshiki Yamagata, Kunihiro Nishimura
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-24823-0
Popis: In the context of climate change, heatstroke is expected to become an increasingly relevant public health concern. Here, the authors develop and validate prediction models for the number of all heatstroke cases in different cities in Japan.
Databáze: Directory of Open Access Journals