Boundedness of solutions and stability of certain second-order difference equation with quadratic term

Autor: Emin Bešo, Senada Kalabušić, Naida Mujić, Esmir Pilav
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-22 (2020)
Druh dokumentu: article
ISSN: 1687-1847
65784812
DOI: 10.1186/s13662-019-2490-9
Popis: Abstract We consider the second-order rational difference equation xn+1=γ+δxnxn−12, $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$ where γ, δ are positive real numbers and the initial conditions x−1 $x_{-1}$ and x0 $x_{0}$ are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje