Boundedness of solutions and stability of certain second-order difference equation with quadratic term
Autor: | Emin Bešo, Senada Kalabušić, Naida Mujić, Esmir Pilav |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-22 (2020) |
Druh dokumentu: | article |
ISSN: | 1687-1847 65784812 |
DOI: | 10.1186/s13662-019-2490-9 |
Popis: | Abstract We consider the second-order rational difference equation xn+1=γ+δxnxn−12, $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$ where γ, δ are positive real numbers and the initial conditions x−1 $x_{-1}$ and x0 $x_{0}$ are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |