Autor: |
Jing Lu, Jingjun Jiang, Yidan Bai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 14, p 2162 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12142162 |
Popis: |
Accurate flight training trajectory prediction is a key task in automatic flight maneuver evaluation and flight operations quality assurance (FOQA), which is crucial for pilot training and aviation safety management. The task is extremely challenging due to the nonlinear chaos of trajectories, the unconstrained airspace maps, and the randomization of driving patterns. In this work, a deep learning model based on data-driven modern koopman operator theory and dynamical system identification is proposed. The model does not require the manual selection of dictionaries and can automatically generate augmentation functions to achieve nonlinear trajectory space mapping. The model combines stacked neural networks to create a scalable depth approximator for approximating the finite-dimensional Koopman operator. In addition, the model uses finite-dimensional operator evolution to achieve end-to-end adaptive prediction. In particular, the model can gain some physical interpretability through operator visualization and generative dictionary functions, which can be used for downstream pattern recognition and anomaly detection tasks. Experiments show that the model performs well, particularly on flight training trajectory datasets. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|